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characteristic of each load class [4]-[6]. One may use the time 

samples from the original time domain representation as 

distinguishing features. However, it is common to, instead, form a 

set of shape features from the time-domain behavior of load 

samples. Some examples such as average to maximum power 

ratios, or ratios between average power at different times of the 

day (daylight period, night period, or the entire day), can be found 

in the literature [4], [7], [8], and [9]. In more modern schemes, 

alternative mathematical features such as harmonic-based 

coefficients, Fourier coefficients, and time-frequency-based 

features have been in [5], [10], and [6], respectively. From 

geometrical viewpoint, the corresponding shape of a load class 

within the feature space (or shape of its corresponding cluster), 

depends on the distribution of the extracted features. 

    The 3rd step is the FS procedure that is usually performed to 

further reduce the dimensionality of the feature space in high 

dimensional schemes. An appropriate FS approach can 

significantly decrease the time complexity (by reducing the feature 

space dimension) while form a more clustered-compact feature 

space. Principal component analysis is the most common 

mathematical projection recognized in this regard, while other 

dimensional reduction techniques such as curvilinear component 

analysis, or the canonical variate analysis were utilized by different 

researchers, in [11], [12], respectively.  

    Finally, in the 4th step and based on requirements of different 

applications, various clustering or classification algorithms have 

been applied to find the correct between-class boundaries in the 

feature space. Naturally, the overall performance of a typical 

classifier would be highly dependent on the prior FE and FS 

procedures. Geometrically, if all classes have a compact 

distribution (and are widely separated from each other), a simple 

linear classifier should be able to perfectly recognize the 

associated boundaries between these classes and accurately assign 

the correct class label to each of the load classes. A large set of 

supervised, semi-supervised and unsupervised approaches have 

been already examined in the previous work, such as k-means or 

fuzzy k-means clustering [13], a probabilistic neural network 

(PNN) [14], self-organizing maps (SOM) [15] and Gaussian 

mixture model (GMM) [16]. A new approach is presented in [17] 

that exploits the ant colony principles. A variety of other PR 

techniques such as the support vector clustering, dynamic time 

warping, and latent Dirichlet allocation have also been applied to 

cluster electricity customers [18]-[22]. 

B. Techinical Challenges and Contributions 

    A major limitation associated with most of the aforementioned 

approaches is their holistic viewpoint.  Usually, these approaches 

have been adapted in case of very small number of load samples 

[23]-[24], or have been verified in case of a single building-type 

[25], or over a seasonal dataset [26]. On the other hand, some of 

these techniques are only applicable in terms of specific 

applications. For example, since the occurrence time of statistical 

features of the load patterns are not considered in the dynamic time 

wrapping-based frameworks, these methods are not useful in case 

of energy storage planning. Similarly, Fourier coefficients do not 

reveal useful information about the time resolution of a load peak 

or load variation. Time-frequency features may solve this issue but 

still generate a large set of features which needs postprocessing 

procedures to be implementable in case of large-scale datasets with 

tens of thousands of load patterns. To the best of our knowledge 

none of the aforementioned work considers a large-scale dataset 

with tens of thousands load profiles.   

    In this work we aim to design an appropriate benchmark system 

to assess efficacy of buildings load management methods by 

classifying a large yearly dataset of various load types including 

commercial, educational, industrial, and grocery buildings. For 

this purpose, first, daily load patterns of each building are 

considered as individual load samples results in over 35000 load 

samples from 100 buildings. Then, a morphological filtering 

procedure is used to segmentize each of these load samples. Unlike 

small-scale seasonal-based databases, in such a huge year-round 

dataset load peaks do not necessarily occur at a routine time frame, 

resulting in a set of load curves with similarity in shape, but with 

considerable amount of variation in time behavior. Thus, in 

contrast with former shape-based feature extraction methods, 

where the daily load pattern is segmented based on the day-time 

period [23], in this work, a set of energy-based features is extracted 

from segments and is fed to a hierarchical clustering algorithm to 

partition this enormous dataset into an optimal number of classes.  

    Due to enormous scale of the data space, most of state of the art 

clustering approaches are not easily implementable. Moreover, 

some techniques such as k-means chasing approaches would need 

the maximum number of clusters to be initially determined. 

Furthermore, our findings indicate that the usual clustering 

evaluation metrices are widely ignoring the smaller-scale clusters 

and are biased toward the populated clusters. To address these 

issues, we designed an elastic manual dendrogram cutting 

modification on hierarchical clustering approach that would result 

in the best overall performance. In the final step, each building is 

assigned to a hardship-analysis category based on the total number 

of load classes it may include. 

II. DATASET PROCUREMENT AND DATA PARSING 

Our dataset is a yearly (5 minute) demand power for 98 

different buildings including 25 commercial, 25 educational, 25 

food shops and, 23 industrial buildings. Figure.1, graphically 

displays, the statistical properties and specifications of the 

proposed database. Variety of buildings from different time zones, 

climate situations, sizes and subindustries are collected to 

introduce a comprehensive benchmark system. Since quarter-

based time interval analysis is more common within the load 

profiling literature [23], using a 3rd order moving average filter, we 

converted 5min intervals to 15min. This filtering is usually 

performed to eliminate the unnecessary variations in the load 

shapes.  
 

 

Fig.1. Dataset Specification 
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III. METHODOLOGY 

In this paper, we will follow the stepwise PR framework to deal 

with the ELC problem. In this section, we present the technical 

details of the approaches we used to address the corresponding 

challenges in each of the 4 aforementioned PR steps. The final goal 

is to assign similar load patterns into the same group without prior 

knowledge of groups definition. This is widely known as a 

clustering problem [27]. Fig.2 shows the detailed diagram of the 

proposed load clustering methodology for load clustering. 

 

Fig. 2. Morphological-based load clustering algorithm 

A. Data Preprocessing: Morphological Filtering 

    Due to the existence of a couple of outliers in the load samples, 

we have excluded 2 buildings from the final evaluations. As said, 

each daily load profile from each of 98 case studies is taken and 

considered as an individual sample which results in a total of 

35868 load samples. To address the further requirements in energy 

management applications, each load sample is split into a limited 

number of smaller segments, based on considerable changes in the 

load behavior.  

    Unlike the usual day-time based load pattern segmentations 

(morning, afternoon, night), in this work an adaptive 

morphological filtering procedure has been applied to find the 

major change points in the load pattern. Reliable detection and 

localization of change points in the distributional pattern of a 

signal is a conventional and challenging problem in statistics, and 

a variety of methods have been developed to address this 

combinatorial problem. Usually, the changepoint analysis is 

referred to the problem of identifying of points within a signal 

support where one or more statistical properties are changed. This 

problem can be formulated in terms of a penalized (usually 

unconstrained) mathematical optimization.  

   Consider a load pattern, 𝒙, of length 𝑁 with a total number of 𝐾 

changepoints along its support occurred at the following set of 

ordered time samples {𝜏𝑘: 𝑘 = 1: 𝐾}, such that, 𝜏𝑘 = 0 and 𝜏𝐾 =

𝑁. These 𝐾 changepoint segementize 𝒙 such that, each of the 𝐾 +
1 subsections in the load pattern is happening within a time 

interval 𝜏𝑘 < ∆𝑡 < 𝜏𝑘+1. Now define the following loss function: 

 

∑[ℒ(𝑥(𝜏𝑘−1+1:𝜏𝑘)] + 𝛼𝑝(𝑘)

𝐾+1

𝑘=1

                     (1) 

 

Minimizing this function over a set of changepoints, 𝜏𝑘, can 

determine the optimal number and locations of change points 

along signal 𝒙. Variety of possible mathematical formulations can 

be used to define the segment loss function, ℒ, and the linear 

penalize term 𝛼𝑝(𝑘). In this work we use the following 

mathematical minimization:   

 

Ξ(�̃�) = min
𝜏∈ℵ�̃�

∑[ℒ(𝑥(𝜏𝑘−1+1:𝜏𝑘)] + 𝛼

𝐾+1

𝑘=1

               (2) 

 

where Ξ(0) = −𝛼, and ℵ𝑡 denotes a possible set of changepoints  

{�̂�𝑘: 𝑘 = 1: 𝐾} for a typical signal 𝒙1:𝑡. In our framework, similar 

to the approach that is developed in [30] we considered a constant 

penalized factor. The minimization problem (2) can be rewritten 

as follows: 

 

Ξ(�̃�) = min
𝑡

{min
𝜏∈ℵ𝑡

∑[ℒ(𝑥(𝜏𝑘−1+1:𝜏𝑘))] + ℒ(𝑥(𝑡+1:𝑛)) + 𝛼

𝐾+1

𝑘=1

 }

= min
𝑡

 {Ξ(𝑡) + ℒ(𝑥(𝑡+1:𝑛)) + 𝛼}               (3) 

 

In this work we define the loss term ℒ(𝑥(𝜏𝑘−1+1:𝜏𝑘)) of each 

segment as the residual error of each segment from its local 

average. In order to solve this recursion problem and find the 

optimal set of changepoints we have used the pruned exact linear 

time (PELT) partition algorithm (Algorithm.1) that is introduced 

in [28], however, we have, instead, replaces the internal 

minimization problem with the maximization over the log-

likelihood of the loss function. Using this morphological filtering 

procedure, we found the most significant changes in each load 

profile.  

    Fig.3 illustrates an example of such a filtering on a typical load 

pattern with a total number of 4 changepoints along its support. 

Once the morphological filtering is applied to all load profiles, we 

eliminated some redundant changepoints which are not satisfying 

certain validity constraints. Consider 𝑃 = {𝑃𝑛: 𝑛 = 1: 𝑁} ∈ 𝑅𝑁 to 

be a vector of hourly power demand values for a daily load pattern 

and �̅�𝑠𝑒𝑔 to be the average segment power. If: 

  

1) Number of samples between two change points < 8, OR 

2) 𝑃𝑚𝑎𝑥𝑠𝑒𝑔
 –  𝑃𝑚𝑖𝑛𝑠𝑒𝑔

× ∆𝑡𝑠𝑒𝑔 × 0.5 <
2

100
× 𝐸,  (𝐸 is the total 

energy of the load profile, 

both change points are eliminated. Else if,   

 

|�̅�(𝑠𝑒𝑔𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠) − �̅�(𝑠𝑒𝑔𝑛𝑒𝑥𝑡)| > 0.2  

Two corresponding changepoints (𝜏𝑘 , 𝜏𝑘+1) are replaced with a 

single change point located at 𝜏𝑘 +
∆𝑡𝑠𝑒𝑔

2
 if ∆𝑡𝑠𝑒𝑔 is even, else it 

will be located at 𝜏𝑘 +
∆𝑡𝑠𝑒𝑔+1

2
. 
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Algorithm.1. PELT: 

Inputs: A load pattern 𝒙 ∈ 𝑅𝑁 

           An appropriate loss function ℒ(. ) 

           An independent penalty constant 𝛼 

           A constant C such that satisfies the following inequality: 

            ℒ(𝑥(𝑡1+1:𝑡2)) + ℒ(𝑥(𝑡2+1:𝑡3)) + 𝐶 ≤ ℒ(𝑥(𝑡1+1:𝑡3)) ∀ (𝑡1 < 𝑡2 < 𝑡3) 

 

Initializations: Ξ(0) = −𝛼, ℵ0 = 𝑁𝑈𝐿𝐿 

 

For 𝜏∗ = 1: 𝑁 

1. Calculate Ξ(𝜏∗) = min
0≤𝜏<𝜏∗

 {Ξ(𝜏) + ℒ(𝑥(𝜏+1:𝜏∗)) + 𝛼} 

2. Let �́� = 𝑎𝑟𝑔( min
0≤𝜏<𝜏∗

 {Ξ(𝜏) + ℒ(𝑥(𝜏+1:𝜏∗)) + 𝛼})   

3. Set ℵ𝜏∗ = (ℵ�́� , �́�) 

 

Output: the set ℵ𝑁                  

 

  
Fig. 3. Morphological filtering of a typical load pattern with 𝑀 = 4 changepoints.  

B. Feature extraction  

    Following the morphological segmentation step, in this work, 

the following set of energy-based features are extracted from each 

load segment. Consider 𝑃 = {𝑃𝑛: 𝑛 = 1: 𝑁} ∈ 𝑅𝑁 to be the vector 

of hourly power demand values, for each load segment within two 

chasing changepoints we define: 

1) load factor of the load profile (𝐿𝐹): 

𝐿𝐹 =  
�̅�

𝑃𝑚𝑎𝑥
                                     (4) 

2) total energy of segment (𝐸𝑠𝑒𝑔): 

𝐸𝑠𝑒𝑔 =  ∑ 𝑃𝑘             
𝑡𝑘+1
𝑡𝑘

                       (5) 

3) segment time period (k): 

∆𝑡𝑠𝑒𝑔 = 𝜏𝑘+1 − 𝜏𝑘                         (6) 

4) average power of segment (𝑃𝑠𝑒𝑔): 

𝑃𝑠𝑒𝑔 =  
𝐸𝑠𝑒𝑔

∆𝑡𝑠𝑒𝑔
                                     (7) 

C. Hirarchical Clustering 

    In PR, clustering is referred to any technique that tries to place 

similar data samples into the same group without any prior 

knowledge of groups specifications [27]. Based on the very own 

specifications of our approach, we implement a pre-clustering step 

where load patterns are initially assigned to a subgroup based on 

the number of changepoints they have within their support. In this 

study we considered the minimum and maximum number of valid 

changepoints to be 0 and 7, respectively. Consequently, we start 

with 8 subgroups. Obviously, the total number of possible features 

for a load pattern is equal to the number of segments, times the 

number of general extracted features, equal to 4 (as defined in 

section III.C). As such, a feature vector 𝑓 ∈ 𝑅(𝑚×3)+1, 𝑚 = {1: 8} 

is calculated and assigned to each load pattern (load factor is 

calculated over the whole load profile). In this way, for each load 

subgroup we have defined a multidimensional feature space and 

the goal of the clustering step is to marginalize this feature space 

to find the optimum number of load classes.  

    Regarding the enormous size of the data space we have (over 

35000 load patterns), most of the sophisticated parametric 

clustering approaches are not adequately implementable. 

Moreover, some other methods, including the k-means family, 

would need a pre-knowledge on the maximum number of clusters 

which limits our flexibility in cluster number selection. 

Furthermore, our findings verify that the usual clustering 

evaluation criterions which are used to optimize the final number 

of clusters are widely ignoring the smaller-scale clusters and are 

biased toward the populated clusters. To avoid the associated 

drawbacks with these approaches we have used an elastic manual 

dendrogram cutting modification on hierarchical clustering 

approach that would result in the best overall performance. 

    The hierarchical clustering is a robust clustering technique that 

groups a set of data samples over various levels by generating a 

similarity graph widely known as the cluster-tree or dendrogram 

[23]. Dendrogram can be constructed agglomeratively, or 

divisively, where load samples are rather grouped or split to 

generate courser or finer clusters in a multilevel regime. Unlike, 

single scale colonized clustering algorithms such as k-means or 

GMM, it rather creates a multiscale hierarchy where clusters at 

neighbor levels can easily merge together. A sample of a 

dendrogram is presented in Fig.4.a. A major advantage of such a 

visualized clustered structure is the flexibility in constructing the 

final clusters by cutting the hierarchical cluster tree at a level that 

is most appropriate for a specific application.  

D. Cluster size elasticity issue and our solution 

    The most important question in hierarchical clustering to answer 

is where and how to cut the dendrogram to extract the best possible 

clusters. In this regard, a variety of cluster evaluation metrics such 

as silhouette are available to estimate the optimal number of 

clusters. Consider a possible partition of clusters 𝑐1, … , 𝑐𝑝, the 

Silhouette criterion is defined as the following average over all 

datums in each and every cluster 𝑐𝑗: 

𝑆 = 𝑚𝑒𝑎𝑛𝑐𝑗
(𝑚𝑒𝑎𝑛 ∑

 (𝑏𝑖−𝑎𝑖)

 𝑚𝑎𝑥(𝑎𝑖,𝑏𝑖)

𝐼𝑐𝑗 

𝑖=1
) 𝑓𝑜𝑟 𝑗 = 1: 𝑝     (7)       

where 𝑎𝑖 is the average distance from the ith datum to all other 

samples in the same cluster, and 𝑏𝑖 is the smallest average distance 

from the ith datum to all other samples in a different cluster, 

minimized over clusters. However, since these techniques are 

calculating the evaluation criteria using data samples in distinct 

clusters, the final value may vary if the number of cluster elements 

varies over a big range. In such a situation the evaluation metric 

would neglect the small size clusters and the algorithm will merge 

them with the closest large-size cluster. An alternative approach is 

to use the inconsistency coefficients which is a quantified indicator 

of the relative consistency of each link in a dendrogram. This value 

is defined as the ratio between the height of a link (the orange 

arrow in Fig.4.a) with respect to the average height of links below 

it. Consequently, a high inconsistency coefficient is calculated for 
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those links that are joining into distinct clusters while those which 

are ending up with indistinct clusters would have a low 

inconsistency value. Whenever, there is a meaningful, visible, 

consistency gap in the tree we may cut the dendrogram 

horizontally and form the clusters accordingly.    

 

 

    

Figure 4.a) A manually cut dendrogram with 6 clusters using inconsistency 

threshold criterion for a partial dataset including 1000 loads with 2 changepoints 
along their support, b) Clustering results  

 

  

 

Figure 5.a) Silhouette criterion for a partial dataset including 1000 loads with 2 

changepoints along their support, b) Clustering results, c) Clustered feature space 

based on Silhouette criterion (left), vs inconsistency criterion (right)   

    In Fig. 4.b and Fig. 5.b-c we compared the clustering 

performance of the hierarchical clustering, using the Silhouette vs 

direct usage of inconsistency coefficient. The inconsistency 

coefficient threshold has been set to 0.95. From Fig. 5.a we can see 

that the Silhouette criterion suggest the optimal number of clusters 

to be 2. However, a dendrogram with 6 cut clusters can reveal a 

much more appropriate illustration of the load samples distribution 

within the feature space. Obviously, there are 4 more load 

subclasses with distinctive characteristics in this typical dataset 

which are eliminated by Silhouette clustering metric, due to their 

small population (similar observations resulted from other cluster 

validation metrics). Fig.2 illustrates the detailed diagram of the 

proposed load clustering framework. 

IV. RESULTS, AND DISCUSSIONS 

    The proposed framework has been exploited to generate a 

comprehensive benchmark system for load profiles from the 

dataset which was introduced in Section II. As mentioned, 

following the morphological filtering step, the initial 35868 load 

samples are grouped, and associated features have been extracted. 

The inconsistency coefficient-based hierarchical clustering has 

been independently implemented on each subgroup of data 

samples. Table. I present the optimal number of clusters found for 

each subgroup. Consequently, a total number of 203 initial clusters 

have been formed for the whole dataset. Fig.6 illustrates a multiple 

set of load classes resulted from the clustering procedure, with 1-

3 changepoints recognized along their supports.  

  

Table. I 

No-chgpnt 0 1 2 3 4 5 6 7 

No-class 4 25 28 40 37 37 23 9 

 

 

Figure.6. The clustering results over 28651 load samples with 1-3 

changepoints along their support. 

    Although one may use all these clusters for further analysis, a 

level of similarity has been observed among some of the classes 

from different subgroups. As such a complementary merging 

mechanism has been developed to reduce the possible redundancy 

in the load classes. This approach has been summarized in 

Algorithm.2. Figure 7.a, and b, are representing the Grammian 

(a) 

(b) 

(a) 

(b) 

(c) 



6 

 

matrix formed by the correlation analysis among the average 

pattern of the 203 initial load classes, and the location of the most 

correlated classes with more than 95% of similarity level. 

Algorithm 2, reduces the total number of load categories to the 165 

final classes. 

 
Algorithm.2: Complementary Class Redundancy Elimination 

1. The average load pattern of each initial load class is calculated  

2. The N by N Grammian matrix (Fig.7.a) is formed by calculating 

the pairwise correlation coefficients among all average-class load 

patterns: N=203 is the number of initial classes.  

3. During an iterative procedure: 

3.0 An appropriate correlation threshold (thr) would be selected 

3.1 For each average-load index a group of candidate loads 

satisfying the threshold criteria (pairwise) would be selected  

3.2 Due to pairwise checking, starting from each load index 

would result in a different set 

3.3 The set with the maximum sum of pairwise correlation 

among its members would be chosen 

3.4 Redundant class-index assignments are prohibited by 

removing the previously selected average-load indexes from the 

calculation in the future iterations 

3.5 L<N number of load classes after merging are formed: L= 

115 for thr = 0.95  

4. Each of these L new classes are checked among their members 

for energy flattening, and some classes are splitted into smaller sub-

classes with similar energy level. Finally, L<M<N number of load 

classes are formed.   

5. All load patterns associated with each average-load pattern 

index for each of the final 𝑀 classes, are merged together and form 

the final classes: The final number of classes: M=165 for thr=0.95 

 

 

 

 
 

 

 

 

Figure 7.a. The Grammian matrix which reveals the similarity level among the 

average pattern of the 203 initial load classes, and b. the location of highly 

correlated class with more than 95% similarity in the correlation unit. 

 

Figure.8. a-d: Examples from 4 different final load-classes assigned to different 

categories of buildings (red curves are specifying a sample pattern from each 

class). 

    Now we have all we needed to establish our final benchmark 

system. Figure 9.a, illustrates the distribution of load classes 

among each building. Building are ordered and numbered from 1 

to 100 such that 1 to 25: commercial, 26 to 50: educational, 51 to 

75: grocery and 76:100 industrial (building 76 and 84 are 

excluded). A natural and expected observation is that the variation 

of load classes in grocery stores is the least while is the most in 

industrial plants. Fig.9.b shows the other side of the coin, which is 

a histogram-type representation of the number of load classes vs 

building number.    

 
 

Figure 9.a, distribution of load classes among 100 buildings, b. total number of 

load classes contributing in each building load data. 

    At the final step of our analysis, each of our original 100 

buildings, are classified into 4 levels of analysis difficulty based on 

the variation in their load-classes involvedness as mentioned in 

Table. III. Considering this criterion, the following chart is obtained 

for each building category (Table. II): 

 

Table. II 
 

Low 

Variation 

Medium 

Variation 

High 

Variation 

Enormous 

Variation 

Commercial 0 23 1 1 

Educational 0 10 15 0 

Grocery 22 2 1 0 

Industrial 1 11 8 3 

 

Table. III 

Low number of classes < 20 

20 ≤ Medium number of classes≤40 

41 ≤ High number of classes <64 

64 ≤ enormous number of classes 

 

    Finally, Figure.10.a and b are representing the circular charts of 

the percentage of each building category in each analysis difficulty 

level based on the load-class variation and vice versa, respectively.  

I. CONCLUSION REMARKS 

    In this work, a reliable and comprehensive benchmark system 

for load profiles has been introduced which could play an 

important role in evaluating different building demand 
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management frameworks. A large-scale dataset including the 

yearly load data from 100 commercial, educational, industrial and 

grocery buildings have been considered. Each daily pattern of each 

building was assumed as an individual load samples. Then, a 

morphological filtering procedure is used in to divide each of these 

load samples into a set of smaller segments after each considerable 

behavioral change in the pattern of load sample. Next, a set of 

energy-based features is extracted which forms a multidimensional 

feature space. An elastic hierarchical clustering algorithm is then 

utilized to divide this enormous feature space into an optimal 

number of classes. Finally, each building is assigned to a different 

categories based on the total number of load classes contributed in 

its sub dataset. Our designated benchmark system can easily be 

expanded by adding new buildings and forms a new powerful 

analysis toolbox that can be used further to validate any research 

in the area of demand response, building management and load 

classification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.10.a and b The circular charts of the percentage of each building category 

with respect to load analysis difficulty level and vice versa, respectively. 
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